

Dynamical Network Analysis

This package was built to provide an updated and enhanced Python implementation
of the Dynamical Network Analysis method, for the analysis of Molecular Dynamics
simulations. The package was optimized for interactive data analysis and
visualization through Jupyter Notebooks (see Tutorial),
and provides an interface for rendering publication-quality figures using
VMD [https://www.ks.uiuc.edu/Research/vmd/].
It allows for extensive customization of analysis workflows to suit
research-specific needs.

Contents:

	Introduction
	Scientific Background

	Dynamical Network Analysis

	Current Implementation

	Installation
	Installing with pip

	Requirements

	Build the package from source:

	Troubleshooting installation with pip

	Tutorial

	Usage

	Citing

	Reference
	Process Trajectory Data

	Save and Load Data

	Contact Detection

	Generalized Correlations

	Network Properties

	Toolkit

	Visualization

Indices and tables

	Index

	Module Index

	Search Page

Resources and References

Citing

To cite this package please use the following publication:

	Generalized correlation-based dynamical network analysis: a new high-performance approach for identifying allosteric communications in molecular dynamics trajectories. JCP (2020). DOI: 10.1063/5.0018980 [https://doi.org/10.1063/5.0018980]

For further discussion and scientific background, please refer to:

	Experimental and computational determination of tRNA dynamics. FEBS Letters (2010). DOI: 10.1016/j.febslet.2009.11.061 [https://doi.org/10.1016/j.febslet.2009.11.061]

	Exit strategies for charged tRNA from GluRS. JMB (2010). DOI: 10.1016/j.jmb.2010.02.003 [https://doi.org/10.1016/j.jmb.2010.02.003]

	Dynamical Networks in tRNA:protein complexes. PNAS (2009). DOI: 10.1073/pnas.0810961106 [https://doi.org/10.1073/pnas.0810961106]

Last Updated

	Date

	Aug 23, 2023

Introduction

Scientific Background

In the last few decades molecular dynamics (MD) simulations have become an
indispensable tool for mechanistic analysis in structural biology. From its
first applications, revealing the fluid-like interior of protein that result from
the diffusional character of local atomic motion, to more recent applications
simulating entire organelles, the information content generated by MD studies
has grown rapidly. With the increase of system sizes and the frequent use of
enhanced sampling techniques, came the need for new and enhanced analysis tools,
capable of extracting information from massive amounts of data and
generating new insight.

Developed just over a decade ago, a particularly interesting technique that has
recently become popular is the analysis of dynamical networks. This technique has
been employed to study how groups of atoms interconnect in communities, and
also the allosteric signaling in tRNA:protein complexes, glutamine amidotransferase,
and many other systems.

The analysis of networks and their properties has a long history, with
applications in diverse fields such as engineering, and social networks,
and their approach to modelling molecular systems is particularly fruitful,
leading to a rich field of research. Using MD simulations to extract dynamical
features from biomolecules, from simple proteins to complexes, one can convert
the atomic representation of the system into a nodes-and-edges representation
that can then be analyzed much like any other graph. A key source of information
is the partitioning of the network in subgroups (or communities) using
algorithms such as Girvan-Newman’s, providing information on cooperative motion
within a protein’s subdomains, or on residues that mediate communication between
communities. Both are computationally challenging tasks, and can become very
expensive as the size of the network grows.

Dynamical Network Analysis

The approach take in Dynamical Network Analysis is one based on the correlation
of movement of representative atoms (or nodes), such as alpha-carbons of amino
acid residues. This serves as a measurement to determine the existence and
strength of a link between different atoms or molecules of a system.

Each node represents a set of atoms of a given residue, and there may be more
than one node per residue. By default, amino acid residues are represented by a
single node located in their alpha-carbons, and nucleotides by two nodes, one
in the backbone phosphate, and one in the nitrogenous base. Water molecules have
one node in their oxygen atom, and ions are trivially represented by one node.

The analysis performed here focuses solely on the correlation of movement of
nodes in close proximity. This way, only short-range direct interactions are
explicitly calculated, and long range interactions are determined through the
analysis of the network itself.

To determine which nodes are in contact, the shortest distance between heavy
atoms (all atoms excluding hydrogen atoms) represented by two nodes is
calculated. If the distance is shorter than 4.5 Angstroms in a simulation
frame, the pair of nodes is said to be in contact in that frame. If a pair of
nodes is in contact in more than 75% of a simulation, they are considered to be
in contact for the purposes of network analysis.

After determining all nodes in contact throughout a simulation, and calculating
the correlation of motion between them, the network can then be visualized
(see Image 1).

[image: Rendering of protein and network.]
Networks analysis of OMP-decarboxylase. (a) Full network revealing the most
correlated regions of the enzyme. The weight of the network edges
(represented by thickness of red tubes) is given by its normalized generalized
correlation coefficient. (b) Rendering showing communities and betweenness
values of edges of the OMP-decarboxylase dynamic network. Communities are
delineated by the different colors of the protein secondary structure, while
betweenness values of network edges are indicated by the thickness red tubes.
Both images were rendered with VMD using the new Network Viewer 2.0 GUI.

Current Implementation

This package was built to provide all functionalities necessary to the analysis
of MD simulations using the Dynamical Network Analysis method. In particular,
it accelerates the calcualtion of generalized correlation coefficients by first
calculating a contact matrix for the network, and then parallelizing the
correlation calculation only for the pairs of nodes in contact. This can save
over 99% of the computational cost of generalized correlation calculations.

Installation

Installing with pip

To install this package and all required Python packages, simply run:

$ pip install dynetan

Requirements

The core package requires Python 3.9 or greater and the following python dependencies:

	MDAnalysis

	SciPy

	NumPy

	pandas

	networkx

	numba

	h5py

	python-louvain

The following packages are not necessary for the core functionality, but are
suggested for use along with jupyter notebooks:

	ipywidgets

	colorama

	nglview

	rpy2

	tzlocal

Build the package from source:

Ensure pip, setuptools, and wheel are up-to-date:

$ python -m pip install --upgrade pip build

Create a Wheel file locally:

$ python3 -m setup.py build

Troubleshooting installation with pip

If during the installation process with pip you find the error
fatal error: Python.h: No such file or directory, make sure your Linux
distribution has the necessary development packages for Python. They contain
header files that are needed for the compilation of packages such as MDAnalysis.
These packages will be listed as “python3-dev” or similar. For example, in
Fedora 32, one can use the command dnf install python3-devel to install
additional system packages with Python headers.

Similarly, if during the installation process you find the error
gcc: fatal error: cannot execute ‘cc1plus’: execvp: No such file or directory,
make sure you have development tools for gcc and c++. For example, in Fedora 32,
one can use the command dnf install gcc-c++ to install additional system
packages with c++ development tools.

Tutorial

A series of tutorials were designed to provide a detailed description of the workflow of
the Dynamical Network Analysis implementation provided here. The tutorials
combine system preparation, data generation, and analysis tools provided in this
package. Tutorials also cover the use if this package through interactive interface
using Jupyter Notebooks, as well as command-line-interface (CLI) scripts that can be
deployed for execution in remote computer clusters.

For the latest version of the tutorial, download the
tutorial files here [https://github.com/melomcr/dynetan_tutorial]
along with accompanying
trajectory data here [https://compbiophysics.auburn.edu/DyNetAn_Tutorial/data/DynamicNetworkAnalysis_MDdata.tar.gz]
(trajectory files are approximately 500MB in size).

Usage

This package was built to provide an updated and enhanced Python implementation
of the Dynamical Network Analysis method, for the analysis of Molecular Dynamics
simulations. The package was optimized for both interactive use through Jupyter
Notebooks (see Tutorial) and for command-line-interface use
(such as in scripts for remote execution. The package allows for extensive
customization of analysis to suit research-specific needs.

We present below an overview of the process of analysing an MD simulation,
using the OMP decarboxylase example that was examined in the reference
publication (see Citing) and the associated
Tutorial.

Load your simulation data by creating a DNAproc object:

Load the python package
import os
import dynetan

Create the object that processes MD trajectories.
dnap = DNAproc()

Select the location of simulation files:

Path where input files will searched and results be written.
workDir = "./TutorialData/"

PSF file name
psfFile = os.path.join(workDir, "decarboxylase.0.psf")

DCD file name
dcdFiles = [os.path.join(workDir, "decarboxylase.1.dcd")]

Select the number of windows into which your trajectory will be split.
This can correspond to a long contiguous simulation or multiple independent
concatenated replicas of the same system:

Number of windows created from full simulation.
numWinds = 4

Sampled frames per window (for detection of structural waters)
numSampledFrames = 10

Select a ligand to be analysed and segment IDs for the biomolecules to be studied.
For automatic detection of structural water molecules, provide the name of the
solvent residue:

ligandSegID = "OMP"

Segment IDs for regions that will be studied.
segIDs = ["OMP","ENZY"]

Residue name for solvent molecule(s)
h2oName = ["TIP3"]

Set the node groups for user-defined residues:

Network Analysis will make one node per protein residue (in the alpha carbon)
For other residues, the user must specify atom(s) that will represent a node.
customResNodes = {}
customResNodes["TIP3"] = ["OH2"]
customResNodes["OMP"] = ["N1","P"]

We also need to know the heavy atoms that compose each node group.

usrNodeGroups = {}

usrNodeGroups["TIP3"] = {}
usrNodeGroups["TIP3"]["OH2"] = set("OH2 H1 H2".split())

usrNodeGroups["OMP"] = {}
usrNodeGroups["OMP"]["N1"] = set("N1 C2 O2 N3 C4 O4 C5 C6 C7 OA OB".split())
usrNodeGroups["OMP"]["P"] = set("P OP1 OP2 OP3 O5' C5' C4' O4' C1' C3' C2' O2' O3'".split())

Define the parameters that will control contact detection:

Cutoff for contact map (In Angstroms)
cutoffDist = 4.5

Minimum contact persistance (In ratio of total trajectory frames)
contactPersistence = 0.75

Finally, load all data to the DNAproc object:

Load info to object

dnap.setNumWinds(numWinds)
dnap.setNumSampledFrames(numSampledFrames)
dnap.setCutoffDist(cutoffDist)
dnap.setContactPersistence(contactPersistence)
dnap.seth2oName(h2oName)
dnap.setSegIDs(segIDs)

dnap.setCustomResNodes(customResNodes)
dnap.setUsrNodeGroups(usrNodeGroups)

In its simplest form, the code will load the MD simulation, detect structural
water molecules, and create a network representation of the nodes selected so far:

dnap.loadSystem(psfFile,dcdFiles)

dnap.selectSystem(withSolvent=True)

dnap.prepareNetwork()

After the nodes and node groups are selected, the system is aligned, contacts
are detected, and the calculation of correlation coefficients can begin:

dnap.alignTraj(inMemory=True)

dnap.findContacts(stride=1)

dnap.calcCor(ncores=1)

With the correlation matrix of each simulation window, we create graph
representations for each simulation window, and calculate network properties
such as optimal paths, betweenness and communities:

dnap.calcGraphInfo()

dnap.calcOptPaths(ncores=1)

dnap.calcBetween(ncores=1)

dnap.calcCommunities()

To automate the detection of edges between two separate subunits of a biomolecular
complex, we can specify segment IDs and request the identification of interface
connections:

dnap.interfaceAnalysis(selAstr="segid ENZY", selBstr="segid OMP")

Finally, all data can be saved to disk:

dnap.saveData(fullPathRoot)

All the interactive visualization of the structure and network nodes and edges,
optimal paths, communities, and high resolution rendering are performed through
jupyter notebooks. Please refer to the Tutorial for
detailed examples.

Citing

To cite this package please use the following publication:

	Generalized correlation-based dynamical network analysis: a new high-performance approach for identifying allosteric communications in molecular dynamics trajectories. JCP (2020). DOI: 10.1063/5.0018980 [https://doi.org/10.1063/5.0018980]

For further discussion and scientific background, please refer to:

	Experimental and computational determination of tRNA dynamics. FEBS Letters (2010). DOI: 10.1016/j.febslet.2009.11.061 [https://doi.org/10.1016/j.febslet.2009.11.061]

	Exit strategies for charged tRNA from GluRS. JMB (2010). DOI: 10.1016/j.jmb.2010.02.003 [https://doi.org/10.1016/j.jmb.2010.02.003]

	Dynamical Networks in tRNA:protein complexes. PNAS (2009). DOI: 10.1073/pnas.0810961106 [https://doi.org/10.1073/pnas.0810961106]

Reference

The documentation provided here (attempts to) follow the Google style of code
documentation, and is built using Sphinx and its Napoleon module.

Process Trajectory Data

This dedicated class controls all trajectory processing necessary for Dynamical
Network Analysis.

	
class dynetan.proctraj.DNAproc(notebookMode=True)

	The Dynamic Network Analysis processing class contains the
infrastructure to carry out the data analysis in a DNA study
of a biomolecular system.

This class uses optimized auxiliary functions to parallelize the most
time-consuming aspects of Dynamical Network Analysis, including
contact detection, calculation of correlation coefficients, and
network properties.

The infrastructure built here is also focused on combining multiple
molecular dynamics simulations of the same system, emphasizing the
calculation of statistical properties. This allows the comparison
between replicas of the same biomolecular system or time evolution
of a particular system.

	
alignTraj(selectStr='', inMemory=True, verbose=0)

	Wrapper function for MDAnalysis trajectory alignment tool.

	Parameters

	
	inMemory (bool) – Controls if MDAnalysis AlignTraj will run in memory.

	selectStr (str) – User defined selection for alignment. If empty, will
use default: Select all user-defined segments and exclude
hydrogen atoms.

	verbose (int) – Controls verbosity level.

	Returns

	none

	Return type

	None

	
calcBetween(ncores=1)

	Main interface for betweeness calculations.

Calculates betweenness for all nodes in the network using NetworkX
implementation of the betweenness centrality for edges and eigenvector
centrality for nodes. When using more than one core, this function uses
Python’s multiprocessing infrastructure to calculate betweenness in
multiple simulation windows simultaneously.

Note

See also calcBetweenPar().

	Parameters

	ncores (int) – Defines how many cores will be used for calculation.
Set to 1 in order to use the serial implementation.

	Return type

	None

	
calcCartesian(backend='serial', verbose=1, n_cores=1)

	Main interface for calculation of cartesian distances.

Determines the shortest cartesian distance between atoms in node groups
of all network nodes. Using a sampling of simulation frames, the function
also calculates statistics on such measures, including mean distance,
standard error of the mean, minimum, and maximum.
This allows analysis comparing network distances and cartesian distances.

Note

See also calc_distances()
and getCartDist().

	Parameters

	
	backend (str) – Defines which MDAnalysis backend will be used for
calculation of cartesian distances. Options are serial or
openmp. This option is ignored if the distance mode is not “all”.

	verbose (int) – Defines verbosity of output.

	n_cores (int) – Number of cores used to process cartesian distance between
network nodes.

	Return type

	None

	
calcCommunities()

	Calculate node communities using Louvain heuristics.

The function produces sets of nodes that are strongly connected,
presenting high correlation coefficients.

It uses Louvain heuristics as an efficient and precise alternative to
the classical Girvan–Newman algorithm, which requires much more
computing power for large and highly connected networks. This method
also maximizes the modularity of the network. It is inherently random,
so different calculations performed on the same network data may
produce slightly different results.

For more details, see the original reference [http://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/meta].

	Return type

	None

	
calcCor(ncores=1, forceCalc=False, verbose=0)

	Main interface for correlation calculation.

Calculates generalized correlation coefficients either in serial
or in parallel implementations using Python’s multiprocessing
package. This function wraps the creation of temporary variables
in allocates the necessary NumPy arrays for accelerated
performance of MDAnalysis algorithms.

Note

See also prep_mi_c().

Note

See also calc_mir_numba_2var().

Note

See also calc_cor_proc().

	Parameters

	
	ncores (int) – Defines how many cores will be used for
calculation of generalized correlation coefficients. Set to
1 in order to use the serial implementation.

	forceCalc (bool) – Defines if correlations will be calculated again
even if they have been calculated before.

	verbose (int) –

	Return type

	None

	
calcEigenCentral()

	Wrapper for calculation of node centrality.

Calculates node centrality for all nodes in all simulation windows.
This calculation is relatively inexpensive and is only implemented for
serial processing.

All results are stored in the network graph itself.

	Return type

	None

	
calcGraphInfo()

	Create a graph from the correlation matrix.

Uses NetworkX to create a graph representation of the network.
One graph is created per simulation window.

For network analysis, node distances are generated with a log
transformation of the correlation values. This way, edges between nodes
with higher correlation coefficients are considered “closer”, with
shorter distances, and nodes with low correlation coefficients are
“far apart”, with larger distance.

Note

See also calcOptPathPar()
and calcBetweenPar().

	Return type

	None

	
calcOptPaths(ncores=1)

	Main interface for optimal path calculations.

Calculates optimal paths between all nodes in the network using
NetworkX implementation of the Floyd Warshall algorithm. When using more
than one core, this function uses Python’s multiprocessing
infrastructure to calculate optimal paths in multiple simulation
windows simultaneously.

Note

See also calcOptPathPar().

	Parameters

	ncores (int) – Defines how many cores will be used for calculation
of optimal paths. Set to 1 in order to use the
serial implementation.

	Return type

	None

	
checkContactMat(verbose=1)

	Sanity checks for contact matrix for all windows.

Checks if the contact matrix is symmetric and if there are any nodes
that make no contacts to any other nodes across all windows.
The function also calculates the percentage of nodes in contact over
the entire system.

	Parameters

	verbose (bool) – Controls how much output will the function print.

	Return type

	None

	
checkSystem()

	Performs a series of sanity checks.

This function checks if the user-defined data and loaded simulation data
are complete and compatible. This will print a series of diagnostic
messages that should be used to verify if all calculations are set up
as desired.

	Return type

	None

	
filterContacts(notSameRes=True, notConsecutiveRes=False, removeIsolatedNodes=True, verbose=1)

	Filters network contacts over the system.

The function removes edges and nodes in preparation for network analysis.
Traditionally, edges between nodes within the same residue are removed,
as well as edges between nodes in consecutive residues within the same
polymer chain (protein or nucleic acid). Essentially, nodes that have
covalent bonds connecting their node groups can bias the analysis and
hide important non-bonded interactions.

The function also removes nodes that are isolated and make no contacts
with any other nodes. Examples are ions or solvent residues that were
initially included in the system through the preliminary automated solvent
detection routine, but did not reach the contact threshold for being
part of the final system.

After filtering nodes and edges, the function updates the MDAnalysis
universe and network data.

	Parameters

	
	notSameRes (bool) – Remove contacts between nodes in the same residue.

	notConsecutiveRes (bool) – Remove contacts between nodes in
consecutive residues.

	removeIsolatedNodes (bool) – Remove nodes with no contacts.

	verbose (bool) – Controls verbosity of output.

	Return type

	None

	
findContacts(stride=1, verbose=1, n_cores=1)

	Finds all nodes in contact.

This is the main user interface access to calculate nodes in contact.
This function automatically splits the whole trajectory into windows,
allocates NumPy array objects to speed up calculations, and leverages
MDAnalysis parallel implementation to determine atom distances.

After determining which frames of a trajectory window show contacts
between atom groups, it checks the contact cutoff to determine if two
nodes has enough contact during a simulation window to be considered
“in contact”. A final contact matrix is created and stored in the
DNAproc object.

This function automatically updates the unified contact matrix that
displays nodes in contact in any simulation window.
The function also performs general sanity checks by
calling checkContactMat().

	Parameters

	
	stride (int) – Controls how many trajectory frames will be skipped
during contact calculation.

	verbose (int) – Controls verbosity level in the function.

	n_cores (int) – Number of cores used to process cartesian distance between
network nodes.

	Return type

	None

	
getDegreeDict(window=0)

	Compiles a dictionary with node degrees.

This wrapper function uses NetworkX graph object to list the
degrees of all nodes.

	Parameters

	window (int) – Simulation window.

	Return type

	dict

	
getPath(node_i, node_j, window=0)

	Wrapper for NetworkX reconstruct_path.

The function calls NetworkX’s reconstruct_path to return the list of
nodes that connect nodeI to nodeJ. This function must only be called
after a path detection run has been completed
(see calcOptPaths()).

	Parameters

	
	node_i (int) – Node ID.

	node_j (int) – Node ID.

	window (int) – Simulation window.

	Returns

	List of node IDs.

	Return type

	list

	
getU()

	Return MDAnalysis universe object.

	Return type

	Any

	
interfaceAnalysis(selAstr, selBstr, betweenDist=15.0, samples=10, verbose=0)

	Detects interface between molecules.

Based on user-defined atom selections, the function detects residues
(and their network nodes) that are close to the interface between both
atom selections. That may include amino acids in the interface, as
well as ligands, waters and ions.

Only nodes that have edges to nodes on the side of the interface
are selected.

Using a sampling of simulation frames assures that transient contacts
will be detected by this analysis.

	Parameters

	
	selAstr (str) – Atom selection.

	selBstr (str) – Atom selection.

	betweenDist (float) – Cutoff distance for selection of atoms that are
within betweenDist from both selections.

	samples (int) – Number of frames to be sampled for detection of
interface residues.

	verbose (int) – Controls verbosity of output.

	Returns

	Number of unique nodes in interface node pairs.

	Return type

	int

	
loadSystem(str_fn, traj_fns)

	Loads Structure and Trajectory files to an MDAnalysis universe.

	Parameters

	
	str_fn (str) – Path to structure file, such as a PSF, PDB,
Gro, or other file formats accepted by MDAnalysis.

	traj_fns (str | List(str)) – Path to one or more trajectory
files. MDAnalysis will automatically concatenate trajectories if
multiple files are passed.

	Return type

	None

	
prep_node_groups(autocomp_groups=True)

	Prepare node groups and check system for unknown residues

This function will load the user-defined node groups into this object
and will create node groups from standard proteic residues and trivial
single-atom residues such as ions.

	Parameters

	autocomp_groups (bool) – Method will automatically add atoms from residues
with defined node groups, as long as the atom is bound to another
atom included in a node group. This is intended to facilitate the
inclusion of hydrogen atoms to node groups without hard coded user
definitions.

	Returns

	none

	Return type

	None

	
prepareNetwork(verbose=0, autocomp_groups=True)

	Prepare network representation of the system.

Checks if we know how to treat all types of residues in the final system
selection. Every residue will generate one or more nodes in the final
network. This function also processes and stores the groups of atoms
that define each node group in specialized data structures.

Note

We need this special treatment because the residue information
in the topology file may list atoms in an order that separates atoms
from the same node group. Even though atoms belonging to the same residue
are contiguous, atoms in our arbitrary node groups need not be contiguous.
Since amino acids have just one node, they will have just one range of
atoms but nucleotides and other residues may be different.

	Parameters

	
	verbose (int) –

	autocomp_groups (bool) –

	Return type

	None

	
saveData(file_name_root='dnaData')

	Save all network analysis data to file.

This function automates the creation of a
DNAdata object, the placement of data
in the object, and the call to its
saveToFile() function.

	Parameters

	file_name_root (str) – Root of the multiple data files to be writen.

	Return type

	None

	
saveReducedTraj(file_name_root='dnaData', stride=1)

	Save a reduced trajectory to file.

This function automates the creation of a reduced DCD trajectory file
keeping only the atoms used for Dynamical Network Analysis. It also
creates a matching PDB file to maintain atom and residue names.

	Parameters

	
	file_name_root (str) – Root of the trajectory and structure
files to be writen.

	stride (int) – Stride used to write the trajectory file.

	Return type

	None

	
selectSystem(withSolvent=False, inputSelStr='', verbose=0)

	Selects all atoms used to define node groups.

Creates a final selection of atoms based on the user-defined residues and
node groups. This function also automates solvent and ion detection, for
residues that make significant contacts with network nodes. Examples are
structural water molecules and ions.

This function will automatically remove all hydrogen atoms from the system,
since they are not used to detect contacts or to calculate correlations.
The standard selection string used is “not (name H* or name [123]H*)”

Ultimately, an MDAnalysis universe is created with the necessary simulation
data, reducing the amount of memory used by subsequent analysis.

	Parameters

	
	withSolvent (bool) – Controls if the function will try to automatically
detect solvent molecules.

	inputSelStr (str) – Uses a user-defined selection for the system. This
disables automatic detection of solvent/ions/lipids and other
residues that may have transient contact with the target system.

	verbose (int) – Controls the verbosity of output.

	Return type

	None

	
setContactPersistence(contact_persistence=0.75)

	Set contact persistence cutoff for contact detection.

	Parameters

	contact_persistence (float) – Ratio of total trajectory frames
needed to consider a pair of nodes to be in contact.
Usually set to 0.75 (75% of total trajectory).

	Return type

	None

	
setCustomResNodes(customResNodes)

	Set atoms that will represent nodes in user defined residues.

Note

THIS METHOD HAS BEEN DEPRECATED. It has been fully replaced
by setNodeGroups().

	Parameters

	customResNodes (dict) – Dictionary mapping residue names with
lists of atom names that will represent network nodes.

	Return type

	None

	
setCutoffDist(cutoff_dist=4.5)

	Set cartesian distance cutoff for contact detection.

For all atom simulations, assuming only heavy atoms (non-hydrogen atoms)
were kept in the system, this number is usually set to 4.5 Angstroms.

	Parameters

	cutoff_dist (float) – Cutoff distance for contact detection.

	Return type

	None

	
setDistanceMode(mode='all')

	Set the distance calculation method to find nodes in contact.

The supported options are:

	all, which calculates all-to-all distances between selected atoms
in the system.

	capped, which uses a kdtree algorithm to only calculate distances
between atoms closer than the network distance cutoff.

The “all” option will be faster for smaller systems. The “capped” option
will benefit larger systems as it will require less memory.

Note

See also setCutoffDist().

	Parameters

	mode (str) – Distance calculation mode.

	Return type

	None

	
setNodeGroups(node_groups)

	Set atoms that will represent node groups in user-defined residues.

Network Analysis will create one network node per standard amino acid
residue (in the alpha carbon). For other residues, the user must specify
atom(s) that will represent a node.
This function is used to define the heavy atoms that compose each node
group for user-defined nodes.

	Parameters

	node_groups (dict) – Nested dictionary mapping residue names
with atom names that will represent network nodes, and sets of
heavy atoms used to define node groups.

	Return type

	None

	
setNumSampledFrames(n_smpld_frms=1)

	Set number of frames to be sampled for solvent detection.

This will determine how many frames will be sampled for solvent detection
per window, and for estimation of cartesian distance between node groups.

	Parameters

	n_smpld_frms (int) – Number of sampled frames per window.

	Return type

	None

	
setNumWinds(num_winds=1)

	Set number of windows.

This will determine the number of windows into which the
trajectory will be split.

Usage tip: If there are several concatenated replicas of the same system,
make sure all have the same number of frames so that the split will
extract each replica in a different window.

	Parameters

	num_winds (int) – Number of windows.

	Return type

	None

	
setSegIDs(seg_ids)

	Set segment IDs for biomolecules ot be analyzed.

	Parameters

	seg_ids (list) – List of Segment IDs to be included in network analysis.

	Return type

	None

	
setSolvNames(solvent_names)

	Set name of solvent molecule residue.

	Parameters

	solvent_names (list) – List of residue names used as solvent.

	Return type

	None

	
seth2oName(solvent_names)

	Set name of solvent molecule residue.

	Parameters

	solvent_names (list) – List of residue names used as solvent.

	Return type

	None

Save and Load Data

This dedicated class stores and recovers results from Dynamical Network Analysis.

	
class dynetan.datastorage.DNAdata

	Data storage and management class.

The Dynamic Network Analysis data class contains the
infrastructure to save all data required to analyze and reproduce
a DNA study of a biomolecular system.

The essential network and correlation coefficients data is stored in
an HDF5 file using the H5Py module, allowing long term storage.
The remaining data is stored in NumPy binary format and the
NetworkX graph objects are stores in a pickle format. This is not
intended for term storage, but the data can be easily recovered from
the HDF5 data.

	
loadFromFile(file_name_root)

	Function that loads all the data stored in a DNAdata object.

	Parameters

	file_name_root (str) – Root of the multiple data files to be loaded.

	Return type

	None

	
saveToFile(file_name_root)

	Function that saves all the data stored in a DNAdata object.

	Parameters

	file_name_root (str) – Root of the multiple data files to be writen.

	Return type

	None

Contact Detection

This module contains auxiliary functions for the parallel calculation of node contacts.

	
dynetan.contact.atm_to_node_dist(num_nodes, n_atoms, tmp_dists, atom_to_node, node_group_indices_np, node_group_indices_np_aux, node_dists)

	Translates MDAnalysis distance calculation to node distance matrix.

This function is JIT compiled by Numba to optimize the search for shortest
cartesian distances between atoms in different node groups . It relies on
the results of MDAnalysis’ distance calculation, stored in a 1D
NumPy array of shape (n*(n-1)/2,), which acts as an unwrapped triangular matrix.

The pre-allocated triangular matrix passed as an argument to this function
is used to store the shortest cartesian distance between each pair of nodes.

This is intended as an analysis tool to allow the comparison of network
distances and cartesian distances. It is similar to dist_to_contact(),
which is optimized for contact detection.

	Parameters

	
	num_nodes (int) – Number of nodes in the system.

	n_atoms (int) – Number of atoms in atom groups represented by system nodes.
Usually hydrogen atoms are not included in contact detection, and
are not present in atom groups.

	tmp_dists (Any) – Temporary pre-allocated NumPy array with atom distances.
This is the result of MDAnalysis self_distance_array calculation.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in node_group_indices_np.

	node_dists (Any) – Pre-allocated array to store cartesian distances
between nodes. This is a linearized upper triangular matrix.

	Return type

	None

	
dynetan.contact.atm_to_node_dist_par(num_nodes, n_atoms, tmp_dists, atom_to_node, node_group_indices_np, node_group_indices_np_aux, node_dists, n_cores)

	(PARALLEL) Translates MDAnalysis distance calculation to node distance matrix.

This function is a parallel version of atm_to_node_dist().
It prepares the calculations and initialized n_cores processes using the
atm_to_node_dist_proc() function.

	Parameters

	
	num_nodes (int) – Number of nodes in the system.

	n_atoms (int) – Number of atoms in atom groups represented by system nodes.
Usually hydrogen atoms are not included in contact detection, and
are not present in atom groups.

	tmp_dists (Any) – Temporary pre-allocated NumPy array with atom distances.
This is the result of MDAnalysis self_distance_array calculation.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in node_group_indices_np.

	node_dists (Any) – Pre-allocated array to store cartesian distances
between nodes. This is a linearized upper triangular matrix.

	n_cores (int) – Number of cores used to process cartesian distance between
network nodes.

	Return type

	None

	
dynetan.contact.atm_to_node_dist_proc(num_nodes, n_atoms, tmp_dists, atom_to_node, node_group_indices_np, node_group_indices_np_aux, in_queue, out_queue)

	(PROCESS) Translates MDAnalysis distance calculation to node distance matrix.

This function is a parallel version of atm_to_node_dist().
It executes the calculations prepared by the atm_to_node_dist_par()
function.

	Parameters

	
	num_nodes (int) – Number of nodes in the system.

	n_atoms (int) – Number of atoms in atom groups represented by system nodes.
Usually hydrogen atoms are not included in contact detection, and
are not present in atom groups.

	tmp_dists (Any) – Temporary pre-allocated NumPy array with atom distances.
This is the result of MDAnalysis self_distance_array calculation.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in node_group_indices_np.

	in_queue (Any) – Multiprocessing queue object for acquiring jobs.

	out_queue (Any) – Multiprocessing queue object for placing results.

	Return type

	None

	
dynetan.contact.calc_distances(selection, num_nodes, n_atoms, atom_to_node, cutoff_dist, node_group_indices_np, node_group_indices_np_aux, node_dists, backend='serial', dist_mode=0, verbose=0, n_cores=1)

	Executes MDAnalysis atom distance calculation and node cartesian
distance calculation.

This function is a wrapper for two optimized atomic distance calculation
and node distance calculation calls. The first is one of MDAnalysis’ atom
distance calculation functions (either self_distance_array or
self_capped_distance). The second is the internal atm_to_node_dist().
All results are stored in pre-allocated NumPy arrays.

This is intended as an analysis tool to allow the comparison of network
distances and cartesian distances. It is similar to get_contacts_c(),
which is optimized for contact detection.

	Parameters

	
	selection (str) – Atom selection for the system being analyzed.

	num_nodes (int) – Number of nodes in the system.

	n_atoms (int) – Number of atoms in atom groups represented by system nodes.
Usually hydrogen atoms are not included in contact detection,
and are not present in atom groups.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	cutoff_dist (float) – Distance cutoff used to capp distance calculations.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in nodeGroupIndicesNP.

	node_dists (Any) – Pre-allocated array to store cartesian distances.

	backend (str) – Controls how MDAnalysis will perform its distance
calculations. Options are serial and openmp. This option is
ignored if the distance mode is not “all”.

	dist_mode (int) – Distance calculation method. Options are 0
(for mode “all”) and 1 (for mode “capped”).

	verbose (int) – Controls informational output.

	n_cores (int) – Number of cores used to process cartesian distance between
network nodes.

	Return type

	None

	
dynetan.contact.dist_to_contact(num_nodes, n_atoms, cutoff_dist, tmp_dists, tmp_dists_atms, contact_mat, atom_to_node, node_group_indices_np, node_group_indices_np_aux)

	Translates MDAnalysis distance calculation to node contact matrix.

This function is JIT compiled with Numba to optimize the search for nodes
in contact.
It relies on the results of MDAnalysis’ distance calculation,
stored in a 1D NumPy array of shape (n*(n-1)/2,), which acts as an unwrapped
triangular matrix.

In this function, the distances between all atoms in an atom groups of all
pairs of nodes are verified to check if any pair of atoms were closer than
a cutoff distance. This is done for all pairs of nodes in the system, and
all frames in the trajectory. The pre-allocated contact matrix passed as an
argument to this function is used to store the number of frames where each
pair of nodes had at least one contact.

This function DOES NOT store the shortest cartesian distances between node
groups, it only checks if at least one pair of atoms from each group is close
enough to count as a contact in a frame.

The calc_distances() function is a variation of this function. It
calculates and stores the shortest cartesian distance between atoms of two
groups, and does that for all node groups in the system.

	Parameters

	
	num_nodes (int) – Number of nodes in the system.

	n_atoms (int) – Number of atoms in atom groups represented by system nodes.
Usually hydrogen atoms are not included in contact detection, and
are not present in atom groups.

	cutoff_dist (float) – Distance at which atoms are no longer considered
‘in contact’.

	tmp_dists (Any) – Temporary pre-allocated NumPy array with atom distances.
This is the result of MDAnalysis self_distance_array calculation.

	tmp_dists_atms (Any) – Temporary pre-allocated NumPy array to store the
shortest distance between atoms in different nodes.

	contact_mat (Any) – Pre-allocated NumPy matrix where node contacts will
be stored.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in node_group_indices_np.

	Return type

	None

	
dynetan.contact.dist_to_contact_par(num_nodes, n_atoms, cutoff_dist, tmp_dists, contact_mat, atom_to_node, node_group_indices_np, node_group_indices_np_aux, n_cores=1)

	(PARALlEL) Translates MDAnalysis distance calculation to node contact matrix.

This function is a parallel version of dist_to_contact().
It prepares the calculations and initialized n_cores processes using the
dist_to_contact_proc() function.

	Parameters

	
	num_nodes (int) – Number of nodes in the system.

	n_atoms (int) – Number of atoms in atom groups represented by system nodes.
Usually hydrogen atoms are not included in contact detection, and
are not present in atom groups.

	cutoff_dist (float) – Distance at which atoms are no longer considered
‘in contact’.

	tmp_dists (Any) – Temporary pre-allocated NumPy array with atom distances.
This is the result of MDAnalysis self_distance_array calculation.

	contact_mat (Any) – Pre-allocated NumPy matrix where node contacts will
be stored.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in node_group_indices_np.

	n_cores (int) – Number of cores used to parallelize calculation.

	Return type

	None

	
dynetan.contact.dist_to_contact_proc(n_atoms, cutoff_dist, tmp_dists, atom_to_node, node_group_indices_np, node_group_indices_np_aux, in_queue, out_queue)

	(PROCESS) Translates MDAnalysis distance calculation to node contact matrix.

This function is a parallel version of dist_to_contact().
It executes the calculations prepared by the dist_to_contact_par()
function.

	Parameters

	
	n_atoms (int) – Number of atoms in atom groups represented by system nodes.
Usually hydrogen atoms are not included in contact detection, and
are not present in atom groups.

	cutoff_dist (float) – Distance at which atoms are no longer considered
‘in contact’.

	tmp_dists (Any) – Temporary pre-allocated NumPy array with atom distances.
This is the result of MDAnalysis self_distance_array calculation.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in node_group_indices_np.

	in_queue (Any) – Multiprocessing queue object for acquiring jobs.

	out_queue (Any) – Multiprocessing queue object for placing results.

	Return type

	None

	
dynetan.contact.get_contacts_c(selection, num_nodes, cutoff_dist, tmp_dists, tmp_dists_atms, contact_mat, atom_to_node, node_group_indices_np, node_group_indices_np_aux, dist_mode=0, ncores=1)

	Executes MDAnalysis atom distance calculation and node contact detection.

This function is JIT compiled with Numba as a wrapper for two optimized distance
calculation and contact determination calls. The first is MDAnalysis’
self_distance_array. The second is the internal dist_to_contact().
All results are stored in pre-allocated NumPy arrays.

	Parameters

	
	selection (MDAnalysis.AtomGroup) – Atom selection for the system being analyzed.

	num_nodes (int) – Number of nodes in the system.

	cutoff_dist (float) – Distance at which atoms are no longer
considered ‘in contact’.

	tmp_dists (Any) – Temporary pre-allocated NumPy array with atom distances.
This is the result of MDAnalysis self_distance_array calculation.

	tmp_dists_atms (Any) – Temporary pre-allocated NumPy array to store the
shortest distance between atoms in different nodes.

	contact_mat (Any) – Pre-allocated NumPy matrix where node contacts will
be stored.

	atom_to_node (Any) – NumPy array that maps atoms in atom groups to their
respective nodes.

	node_group_indices_np (Any) – NumPy array with atom indices for all atoms
in each node group.

	node_group_indices_np_aux (Any) – Auxiliary NumPy array with the indices of
the first atom in each atom group, as listed in node_group_indices_np.

	dist_mode (int) – Method for distance calculation in MDAnalysis (all or capped).

	ncores (int) – Number of cores used to process cartesian distance between
network nodes.

	Return type

	None

	
dynetan.contact.get_lin_index_numba(src, trgt, n)

	Conversion from 2D matrix indices to 1D triangular.

Converts from 2D matrix indices to 1D (n*(n-1)/2) unwrapped triangular
matrix index. This function is JIT compiled using Numba.

	Parameters

	
	src (int) – Source node.

	trgt (int) – Target node.

	n (int) – Dimension of square matrix

	Returns

	1D index in unwrapped triangular matrix.

	Return type

	int

Generalized Correlations

This module contains auxiliary functions for the parallel calculation of
generalized correlation coefficients.

	
dynetan.gencor.calc_cor_proc(traj, win_len, psi, phi, num_dims, k_neighb, in_queue, out_queue)

	Process for parallel calculation of generalized correlation coefficients.

This function serves as a wrapper and manager for the calculation of
generalized correlation coefficients. It uses Python’s multiprocessing
module to launch Processes for parallel execution, where each process uses
two multiprocessing queues to manage job acquisition and saving results.
For each calculation, the job acquisition queue passes a trajectories of a
pair of atoms, while the output queue stores the generalized correlation
coefficient. The generalized correlation coefficient is calculated using a
mutual information coefficient which is estimated using an optimized function.

Note

Please refer to calc_mir_numba_2var() for details about the
calculation of mutual information coefficients.

	Parameters

	
	traj (Any) – NumPy array with trajectory information.

	win_len (int) – Number of trajectory frames in the current window.

	psi (Any) – Pre-calculated parameter used for mutual information estimation.

	phi (Any) – Pre-calculated parameter used for mutual information estimation.

	num_dims (int) – Number of dimensions in trajectory data
(usually 3 dimensions, for X,Y,Z coordinates).

	k_neighb (int) – Parameter used for mutual information estimation.

	in_queue (Any) – Multiprocessing queue object for acquiring jobs.

	out_queue (Any) – Multiprocessing queue object for placing results.

	Return type

	None

	
dynetan.gencor.calc_mir_numba_2var(traj, num_frames, num_dims, k_neighb, psi, phi)

	Calculate mutual information coefficients.

This function estimates the mutual information coefficient based on
Kraskov et. al. (2004) [https://doi.org/10.1103/PhysRevE.69.066138],
using the rectangle method. This implementation is hardcoded for 2 variables,
to maximize efficiency, and is Just-In-Time (JIT) compiled using Numba [https://numba.pydata.org/].

This calculation assumes that the input trajectory of two random variables
(in this case, positions of two atoms) is provided in a
variable-dimension-step format (or “atom by x/y/z by frame” for molecular
dynamics data). It also assumes that all trajectory data has been
standardized (see stand_vars_c()).

	Parameters

	
	traj (Any) – NumPy array with trajectory information.

	num_frames (int) – Number of trajectory frames in the current window.

	num_dims (int) – Number of dimensions in trajectory data
(usually 3 dimensions, for X,Y,Z coordinates).

	k_neighb (int) – Parameter used for mutual information estimation.

	psi (numpy.ndarray) – Pre-calculated parameter used for mutual
information estimation.

	phi (numpy.ndarray) – Pre-calculated parameter used for mutual
information estimation.

	Return type

	float

	
dynetan.gencor.mir_to_corr(mir, num_dims=3)

	Transforms Mutual Information R into Generalized Correlation Coefficient

	Returns

	Generalized Correlation Coefficient (float)

	Parameters

	
	mir (float) –

	num_dims (int) –

	Return type

	float

	
dynetan.gencor.prep_mi_c(universe, traj, beg, end, num_nodes, num_dims)

	Standardize variables in trajectory data.

This function stores the trajectory data in a new format to accelerate the
estimation of mutual information coefficients. The estimation of mutual
information coefficients assumes that the input trajectory of random variables
(in this case, positions of atoms) is provided in a variable-dimension-step
format (or “atom by x/y/z by frame” for molecular dynamics data). However,
the standard MDAnalysis trajectory format if “frame by atom by x/y/z”.

This function also calls a dedicated function to standardize the atom
position data, also necessary for mutual information estimation.

Note

Please refer to stand_vars_c() for details about the data
standardization process. Please refer to calc_mir_numba_2var() for
details about the calculation of mutual information coefficients.

	Parameters

	
	universe (Any) – MDAnalysis universe object containing all
trajectory information.

	traj (Any) – NumPy array where trajectory information will be stored.

	beg (int) – Initial trajectory frame to be used for analysis.

	end (int) – Final trajectory frame to be used for analysis.

	num_nodes (int) – Number of nodes in the network.

	num_dims (int) – Number of dimensions in trajectory data
(usually 3 dimensions, for X,Y,Z coordinates).

	Return type

	None

	
dynetan.gencor.stand_vars_c(traj, num_nodes, num_dims)

	Standardize variables in trajectory data.

This function prepares the trajectory for the estimation of mutual
information coefficients. This calculation assumes that the input trajectory
of random variables (in this case, positions of atoms) is provided in a
variable-dimension-step format (or “atom by x/y/z by frame” for molecular
dynamics data).

Note

Please refer to prep_mi_c() for details about the data
conversion process. Please refer to calc_mir_numba_2var() for details
about the calculation of mutual information coefficients.

	Parameters

	
	traj (Any) – NumPy array with trajectory information.

	num_nodes (int) – Number of nodes in the network.

	num_dims (int) – Number of dimensions in trajectory data
(usually 3 dimensions, for X,Y,Z coordinates).

	Return type

	None

Network Properties

This module contains auxiliary functions for the parallel calculation of network
properties.

	
dynetan.network.calcBetweenPar(nx_graphs, in_queue, out_queue)

	Wrapper to calculate betweenness in parallel.

The betweenness calculations used here only take into account the number of
paths passing through a given edge, so no weight are considered.

For every window, the function stores in the output queue an ordered dict
of node pairs with betweenness higher than zero.

	Parameters

	
	nx_graphs (Any) – NetworkX graph object.

	in_queue (Queue) – Multiprocessing queue object for acquiring jobs.

	out_queue (Queue) – Multiprocessing queue object for placing results.

	Return type

	None

	
dynetan.network.calcOptPathPar(nx_graphs, in_queue, out_queue)

	Wrapper to calculate Floyd Warshall optimal path in parallel.

For the FW optimal path determination, we use the node “distance” as weights,
that is, the log-transformation of the correlations, NOT the correlation itself.

For every window, the function stores in the output queue the optimal paths.
It turns the dictionary of distances returned by NetworkX into a NumPy 2D
array per window of trajectory, which allows significant speed up in data analysis.

	Parameters

	
	nx_graphs (Any) – NetworkX graph object.

	in_queue (Queue) – Multiprocessing queue object for acquiring jobs.

	out_queue (Queue) – Multiprocessing queue object for placing results.

	Return type

	None

Toolkit

This module contains auxiliary functions for manipulation of atom selections,
acquiring pre-calculated cartesian distances, and user interface in jupyter
notebooks.

	
dynetan.toolkit.diagnostic()

	Diagnostic for parallelization of MDAnalysis.

Convenience function to detect if the current MDAnalysis
installation supports OpenMP.

	Return type

	bool

	
dynetan.toolkit.formatNodeGroups(atmGrp, nodeAtmStrL, grpAtmStrL=None)

	Format code to facilitate the definition of node groups.

This convenience function helps with the definition of node groups.
It will produce formatted python code that the user can copy directly
into a definition of atom groups.

If the entire residue is to be represented by a single node, then
grpAtmStrL does not need to be defined. However, if more than one node is
defined in nodeAtmStrL, then the same number of lists need to be added to
grpAtmStrL to define each node group.

	Parameters

	
	atmGrp (Any) – MDAnalysis atom group object with one residue.

	nodeAtmStrL (list) – Strings defining atoms that will represent nodes.

	grpAtmStrL (list|None) – Lists containing atoms that belong to each node group.
If None, all atoms in the residue will be added to the same node group.
This parameter can only be None when a single node is provided.

	Returns

	—

	Return type

	None

	
dynetan.toolkit.getCartDist(src, trgt, numNodes, nodeDists, distype=0)

	Get cartesian distance between nodes.

Retrieves the cartesian distance between atoms representing nodes src and
trgt. The distype argument causes the function to return the mean
distance (type 0: default), Standard Error of the Mean (SEM) (type 1),
minimum distance (type 2), or maximum distance (type 3).

	Parameters

	
	src (int) – Source node.

	trgt (int) – Target node.

	numNodes (int) – Total number of nodes in the system.

	distype (int) – Type of cartesian distance output.

	nodeDists (numpy.ndarray) –

	Returns

	One of four types of measurements regarding the cartesian distance
between nodes. See description above.

	Return type

	float

	
dynetan.toolkit.getLinIndexC(src, trgt, dim)

	Conversion from 2D matrix indices to 1D triangular.

Converts from 2D matrix indices to 1D (n*(n-1)/2) unwrapped triangular
matrix index.

	Parameters

	
	src (int) – Source node.

	trgt (int) – Target node.

	dim (int) – Dimension of square matrix

	Returns

	1D index in unwrapped triangular matrix.

	Return type

	int

	
dynetan.toolkit.getNGLSelFromNode(nodeIndx, atomsel, atom=True)

	Creates an atom selection for NGLView.

Returns an atom selection for a whole residue or single atom in the NGL
syntax.

	Parameters

	
	nodeIndx (int) – Index of network node.

	atomsel (Any) – MDAnalysis atom-selection object.

	atom (bool) – Determines if the selection should cover the entire residue, or just
the representative atom.

	Returns

	Text string with NGL-style atom selection.

	Return type

	str

	
dynetan.toolkit.getNodeFromSel(selection, atmsel, atm_to_node)

	Gets the node index from an atom selection.

Returns one or more node indices when given an MDAnalysis atom selection
string.

	Parameters

	
	selection (str) – MDAnalysis atom selection string.

	atmsel (Any) – MDAnalysis atom-selection object.

	atm_to_node (Any) – Dynamic Network Analysis atom-to-node mapping object.

	Returns

	List of node indices mapped to the provided atom selection.

	Return type

	numpy.ndarray

	
dynetan.toolkit.getPath(src, trg, nodesAtmSel, preds, win=0)

	Gets connecting path between nodes.

This function recovers the list of nodes that connect src and trg nodes.
An internal sanity check is performed to see if both nodes belong to the same
residue. This may be the case in nucleic acids, for example, where two nodes
are used to describe the entire residue.

	Parameters

	
	src (int) – Source node.

	trg (int) – Target node.

	nodesAtmSel (Any) – MDAnalysis atom-selection object.

	preds (dict) – Predecessor data in dictionary format.

	win (int) – Selects the simulation window used to create optimal paths.

	Returns

	
	A NumPy array with the list of nodes or an empty list in case
	no optimal path could be found.

	Return type

	numpy.ndarray

	
dynetan.toolkit.getSelFromNode(nodeIndx, atomsel, atom=False)

	Gets the MDanalysis selection string from a node index.

Given a node index, this function builds an atom selection string in the
following format: resname and resid and segid [and name]

	Parameters

	
	nodeIndx (int) – Index of network node.

	atomsel (Any) – MDAnalysis atom-selection object.

	atom (bool) – Determines if the selection should cover the entire residue, or
just the representative atom.

	Returns

	Text string with MDAnalysis-style atom selection.

	Return type

	str

	
dynetan.toolkit.showNodeGroups(nv_view, atm_grp, usr_node_groups, node_atm_sel='')

	Labels atoms in an NGLview instance to visualize node groups.

This convenience function helps with the definition of node groups.
It will label atoms and nodes in a structure to help visualize the selection
of atoms and nodes.

	Parameters

	
	nv_view (Any) – The initialized NGLview object.

	atm_grp (Any) – The MDanalysis atom group object containing
one residue.

	usr_node_groups (dict) – A dictionary of dictionaries with node groups for
a given residue.

	node_atm_sel (str) – A string selecting a node atom so that only atoms in
that group are labeled.

	Returns

	—

	Return type

	None

Visualization

This module contains auxiliary functions for visualization of the system and
network analysis results.

	
dynetan.viz.getCommunityColors()

	Gets standardized colors for communities.

This function loads pre-specified colors that match those available in
VMD [https://www.ks.uiuc.edu/Research/vmd/].

	Returns

	
	Returns a pandas dataframe with a VMD-compatible color scale for node
	communities.

	Return type

	pandas.DataFrame

	
dynetan.viz.prepTclViz(base_name, num_winds, ligand_segid='NULL', trg_dir='./')

	Prepares system-specific TCL script vor visualization.

This function prepares a TCL script that can be loaded by
VMD [https://www.ks.uiuc.edu/Research/vmd/] to create high-resolution
renderings of the system.

	Parameters

	
	base_name (str) – Base name for TCL script and data files necessary for
visualization.

	num_winds (int) – Number of windows created for analysis.

	ligand_segid (str) – Segment ID of ligand residue. This will create
a special representations for small molecules.

	trg_dir (str) – Directory where TCL and data files will be saved.

	Return type

	None

	
dynetan.viz.showCommunityByID(nvView, cDF, clusID, system, refWindow, shapeCounter, nodesAtmSel, colorValDictRGB, trg_system, trg_window)

	Creates NGLView representation of nodes in a community.

Renders a series of spheres to represent all nodes in the selected community.

The system argument selects one dataset to ve used for the creation of
standardized representations, which allows comparisons between variants of
the same system, with mutations or different ligands, for example.

The colorValDictRGB argument relates colors to RGB codes. This allows the
creation of several independent representations using the same color scheme.

For examples of formatted data, see Dynamical Network Analysis tutorial.

	Parameters

	
	nvView (Any) – NGLView object.

	cDF (Any) – Pandas data frame relating node IDs with their communities in
every analyzed simulation window. This requires a melt format.

	clusID (float) – ID of the community (or cluster) to be rendered.

	system (str) – System used as reference to standardize representation.

	refWindow (int) – Window used as reference to standardize representation.

	shapeCounter (Any) – Auxiliary list to manipulate NGLView representations.

	nodesAtmSel (Any) – MDAnalysis atom selection object.

	colorValDictRGB (Any) – Dictionary that standardizes community colors.

	trg_system (str) – System to be used for rendering.

	trg_window (int) – Window used for rendering.

	Return type

	None

	
dynetan.viz.showCommunityByNodes(nvView, cDF, nodeList, system, refWindow, shapeCounter, nodesAtmSel, colorValDictRGB)

	Creates NGLView representation of nodes in a community.

Renders a series of spheres to represent all nodes in the selected community.

	Parameters

	
	nvView (Any) – NGLView object.

	cDF (Any) – Pandas data frame relating node IDs with their communities in
every analyzed simulation window. This requires a melt format.

	nodeList (list) – List of node IDs to be rendered.

	system (str) – System used as reference to standardize representation.

	refWindow (int) – Window used as reference to standardize representation.

	shapeCounter (Any) – Auxiliary list to manipulate NGLView representations.

	nodesAtmSel (Any) – MDAnalysis atom selection object.

	colorValDictRGB (Any) – Dictionary that standardizes community colors.

	Return type

	None

	
dynetan.viz.showCommunityByTarget(nvView, nodeCommDF, trgtNodes, window, nodesAtmSel, dnad, colorValDict)

	Creates NGLView representation of edges between selected nodes and
their contacts.

Renders a series of cylinders to represent all edges that connect selected
nodes with other nodes in contact. Only nodes that have been assigned to a
community are shown, to minimize the occurrence of unstable contacts. Edges
between nodes in different communities are still rendered, but shown in
different representations.

	Parameters

	
	nvView (Any) – NGLView object.

	nodeCommDF (Any) – Pandas data frame relating node IDs with their
communities.

	trgtNodes (list) – List of node IDs.

	window (int) – Window used for representation.

	nodesAtmSel (Any) – MDAnalysis atom selection object.

	dnad (Any) – Dynamical Network Analysis data object.

	colorValDict (Any) – Dictionary that standardizes community colors.

	Return type

	None

	
dynetan.viz.showCommunityGlobal(nvView, nodeCommDF, commID, window, nodesAtmSel, dnad, colorValDict)

	Creates NGLView representation of a specified community.

Renders a series of cylinders to represent all edges in the network that
connect nodes in the same community. Edges between nodes in different
communities are not rendered.

	Parameters

	
	nvView (Any) – NGLView object.

	nodeCommDF (Any) – Pandas data frame relating node IDs with their
communities.

	commID (float) – Community ID for the community to be rendered.

	window (int) – Window used for representation.

	nodesAtmSel (Any) – MDAnalysis atom selection object.

	dnad (Any) – Dynamical Network Analysis data object.

	colorValDict (Any) – Dictionary that standardizes community colors.

	Return type

	None

	
dynetan.viz.viewPath(nvView, path, dists, maxDirectDist, nodesAtmSel, win=0, opacity=0.75, color='green', side='both', segments=5, disableImpostor=True, useCylinder=True)

	Creates NGLView representation of a path.

Renders a series of cylinders to represent a network path.
The maxDirectDist argument is used as a normalization factor to scale
representations of edges.
For more details on NGL parameters, see
NGLView’s documentation [https://nglviewer.org/nglview/latest/api.html].

	Parameters

	
	nvView (Any) – NGLView object.

	path (list) – Sequence of nodes that define a path.

	maxDirectDist (float) – Maximum direct distance between nodes in network.

	nodesAtmSel (Any) – MDAnalysis atom selection object.

	win (int) – Window used for representation.

	opacity (float) – Controls edge opacity.

	color (str) – Controls edge color.

	side (str) – Controls edge rendering quality.

	segments (int) – Controls edge rendering quality.

	disableImpostor (bool) – Controls edge rendering quality.

	useCylinder (bool) – Controls edge rendering quality.

	dists (Any) –

	Return type

	None

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dynetan	

 	
 	
 dynetan.contact	

 	
 	
 dynetan.datastorage	

 	
 	
 dynetan.gencor	

 	
 	
 dynetan.network	

 	
 	
 dynetan.proctraj	

 	
 	
 dynetan.toolkit	

 	
 	
 dynetan.viz	

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | P
 | S
 | V

A

 	
 	alignTraj() (dynetan.proctraj.DNAproc method)

 	atm_to_node_dist() (in module dynetan.contact)

 	
 	atm_to_node_dist_par() (in module dynetan.contact)

 	atm_to_node_dist_proc() (in module dynetan.contact)

C

 	
 	calc_cor_proc() (in module dynetan.gencor)

 	calc_distances() (in module dynetan.contact)

 	calc_mir_numba_2var() (in module dynetan.gencor)

 	calcBetween() (dynetan.proctraj.DNAproc method)

 	calcBetweenPar() (in module dynetan.network)

 	calcCartesian() (dynetan.proctraj.DNAproc method)

 	calcCommunities() (dynetan.proctraj.DNAproc method)

 	
 	calcCor() (dynetan.proctraj.DNAproc method)

 	calcEigenCentral() (dynetan.proctraj.DNAproc method)

 	calcGraphInfo() (dynetan.proctraj.DNAproc method)

 	calcOptPathPar() (in module dynetan.network)

 	calcOptPaths() (dynetan.proctraj.DNAproc method)

 	checkContactMat() (dynetan.proctraj.DNAproc method)

 	checkSystem() (dynetan.proctraj.DNAproc method)

D

 	
 	diagnostic() (in module dynetan.toolkit)

 	dist_to_contact() (in module dynetan.contact)

 	dist_to_contact_par() (in module dynetan.contact)

 	dist_to_contact_proc() (in module dynetan.contact)

 	DNAdata (class in dynetan.datastorage)

 	DNAproc (class in dynetan.proctraj)

 	
 dynetan.contact

 	module

 	
 dynetan.datastorage

 	module

 	
 	
 dynetan.gencor

 	module

 	
 dynetan.network

 	module

 	
 dynetan.proctraj

 	module

 	
 dynetan.toolkit

 	module

 	
 dynetan.viz

 	module

F

 	
 	filterContacts() (dynetan.proctraj.DNAproc method)

 	
 	findContacts() (dynetan.proctraj.DNAproc method)

 	formatNodeGroups() (in module dynetan.toolkit)

G

 	
 	get_contacts_c() (in module dynetan.contact)

 	get_lin_index_numba() (in module dynetan.contact)

 	getCartDist() (in module dynetan.toolkit)

 	getCommunityColors() (in module dynetan.viz)

 	getDegreeDict() (dynetan.proctraj.DNAproc method)

 	getLinIndexC() (in module dynetan.toolkit)

 	
 	getNGLSelFromNode() (in module dynetan.toolkit)

 	getNodeFromSel() (in module dynetan.toolkit)

 	getPath() (dynetan.proctraj.DNAproc method)

 	(in module dynetan.toolkit)

 	getSelFromNode() (in module dynetan.toolkit)

 	getU() (dynetan.proctraj.DNAproc method)

I

 	
 	interfaceAnalysis() (dynetan.proctraj.DNAproc method)

L

 	
 	loadFromFile() (dynetan.datastorage.DNAdata method)

 	
 	loadSystem() (dynetan.proctraj.DNAproc method)

M

 	
 	mir_to_corr() (in module dynetan.gencor)

 	
 module

 	dynetan.contact

 	dynetan.datastorage

 	dynetan.gencor

 	dynetan.network

 	dynetan.proctraj

 	dynetan.toolkit

 	dynetan.viz

P

 	
 	prep_mi_c() (in module dynetan.gencor)

 	prep_node_groups() (dynetan.proctraj.DNAproc method)

 	
 	prepareNetwork() (dynetan.proctraj.DNAproc method)

 	prepTclViz() (in module dynetan.viz)

S

 	
 	saveData() (dynetan.proctraj.DNAproc method)

 	saveReducedTraj() (dynetan.proctraj.DNAproc method)

 	saveToFile() (dynetan.datastorage.DNAdata method)

 	selectSystem() (dynetan.proctraj.DNAproc method)

 	setContactPersistence() (dynetan.proctraj.DNAproc method)

 	setCustomResNodes() (dynetan.proctraj.DNAproc method)

 	setCutoffDist() (dynetan.proctraj.DNAproc method)

 	setDistanceMode() (dynetan.proctraj.DNAproc method)

 	seth2oName() (dynetan.proctraj.DNAproc method)

 	setNodeGroups() (dynetan.proctraj.DNAproc method)

 	
 	setNumSampledFrames() (dynetan.proctraj.DNAproc method)

 	setNumWinds() (dynetan.proctraj.DNAproc method)

 	setSegIDs() (dynetan.proctraj.DNAproc method)

 	setSolvNames() (dynetan.proctraj.DNAproc method)

 	showCommunityByID() (in module dynetan.viz)

 	showCommunityByNodes() (in module dynetan.viz)

 	showCommunityByTarget() (in module dynetan.viz)

 	showCommunityGlobal() (in module dynetan.viz)

 	showNodeGroups() (in module dynetan.toolkit)

 	stand_vars_c() (in module dynetan.gencor)

V

 	
 	viewPath() (in module dynetan.viz)

 nav.xhtml

 Table of Contents

 		
 Dynamical Network Analysis

 		
 Introduction

 		
 Scientific Background

 		
 Dynamical Network Analysis

 		
 Current Implementation

 		
 Installation

 		
 Installing with pip

 		
 Requirements

 		
 Build the package from source:

 		
 Troubleshooting installation with pip

 		
 Tutorial

 		
 Usage

 		
 Citing

 		
 Reference

 		
 Process Trajectory Data

 		
 DNAproc

 		
 Save and Load Data

 		
 DNAdata

 		
 Contact Detection

 		
 atm_to_node_dist()

 		
 atm_to_node_dist_par()

 		
 atm_to_node_dist_proc()

 		
 calc_distances()

 		
 dist_to_contact()

 		
 dist_to_contact_par()

 		
 dist_to_contact_proc()

 		
 get_contacts_c()

 		
 get_lin_index_numba()

 		
 Generalized Correlations

 		
 calc_cor_proc()

 		
 calc_mir_numba_2var()

 		
 mir_to_corr()

 		
 prep_mi_c()

 		
 stand_vars_c()

 		
 Network Properties

 		
 calcBetweenPar()

 		
 calcOptPathPar()

 		
 Toolkit

 		
 diagnostic()

 		
 formatNodeGroups()

 		
 getCartDist()

 		
 getLinIndexC()

 		
 getNGLSelFromNode()

 		
 getNodeFromSel()

 		
 getPath()

 		
 getSelFromNode()

 		
 showNodeGroups()

 		
 Visualization

 		
 getCommunityColors()

 		
 prepTclViz()

 		
 showCommunityByID()

 		
 showCommunityByNodes()

 		
 showCommunityByTarget()

 		
 showCommunityGlobal()

 		
 viewPath()

_static/file.png

_static/minus.png

_static/plus.png

_images/OMP-Render.png

